Arithmetic Progressions

Multiple Choice Questions

- **Q: 1** If a_n is the n^{th} term of an arithmetic progression whose common difference is d, then which of the following statements is valid?
 - **1** $a_{24} = a_1 + 24 d$ **2** $a_{25} = a_2 + 24 d$ **3** $a_{26} = a_2 + 24 d$ **4** None of these
- Q: 2 Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A) : The difference between any two consecutive terms in the sequence of numbers $\sqrt{6}$, $\sqrt{24}$, $\sqrt{54}$, $\sqrt{96}$, ... is $3\sqrt{6}$.

Reason (R) : The sequence of numbers $\sqrt{6}$, $\sqrt{24}$, $\sqrt{54}$, $\sqrt{96}$, ... form an arithmetic progression.

- **1** Both (A) and (R) are true and (R) is the correct explanation for (A).
- **2** Both (A) and (R) are true but (R) is not the correct explanation for (A).
- 3 (A) is false but (R) is true.
- 4 Both (A) and (R) are false.

Free Response Questions

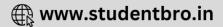
O: 3 Determine whether the following sequence is an arithmetic progression or not.

(-12 + 12 *a*), (-11 + 11 *a*), (-10 + 10 *a*),... where *a* is any rational number.

Show your work.

Q: 4 Amit makes the following statement:

"The sequence of positive integers divisible by 2 but not by 6 form an arithmetic progression."


Check if Amit's statement is true. Give reason for your answer.

Q: 5 The 3rd and the 14th terms of an arithmetic progression are (-9) and (35) [5] respectively.

Which term of this arithmetic progression is five times the 6th term? Show your work.

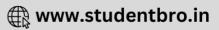
Get More Learning Materials Here : 📕



[1]

Q.No	Correct Answers
1	3
2	3

Get More Learning Materials Here : 📕


Q.No	What to look for	Marks
3	Identifies the two sets of consecutive terms and finds the difference between the terms in each set by subtracting a term from its next term. For example,	0.5
	Second term - First term =(-11 + 11 a) - (-12 + 12 a) = -11 + 11 a + 12 - 12 a = (1 - a)	
	Third term - Second term = (-10 + 10 a) - (-11 + 11 a) = -10 + 10 a + 11 - 11 a = (1 - a)	
	Compares the difference and concludes that the given sequence is an arithmetic progression.	0.5
4	Lists the sequence of positive integers divisible by 2 but not by 6 as 2, 4, 8, 10,	0.5
	Identifies that the difference between the 2 nd and the 3 rd terms is not equal to the previous difference.	0.5
	$(4 - 2) = 2 \neq (8 - 4) = 4$	
	Concludes that Amit's statement is false.	
5	Writes the 3 rd and the 14 th terms of the AP as:	1
	a + 2 d = -9 a + 13 d = 35	
	where <i>a</i> is the first term and <i>d</i> is the common difference of the AP.	
	Solves the above pair of linear equations to obtain the values of <i>a</i> and <i>d</i> as (-17) and 4 respectively.	1.5
	Formulates the equation to find the n^{th} term which is five times the 6 th term as:	1
	a + (n - 1) d = 5(a + 5 d)	

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
	Substitutes the values of <i>a</i> and <i>d</i> in the above equation and solves it as follows.	1.5
	-17 + 4(n - 1) = 5(-17 + 20)	
	=> -17 + 4(n - 1) = 15	
	=>4(n-1)=32	
	=>(n-1)=8	
	=> <i>n</i> = 9	
	Concludes that the required term is the 9 th term.	

Get More Learning Materials Here : 📕

